top of page
Candy Cotton

Publications

2025

Romeo, L., Patruno, C., Cicirelli G. & D’Orazio, T. Multi-view skeleton analysis for human action recognition and segmentation tasks. In 2025 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM). Porto, Portugal.

Devanna, R.P., Romeo, L., Reina, G., & Milella, A. (2025). Yield estimation in precision viticulture by combining deep segmentation and depth-based clustering. Computers and Electronics in Agriculture, 232, 110025.

Romeo, L., Marani, R., Perri, A.G. & Gall, J. (2025). Multi-modal temporal action segmentation for manufacturing scenarios. Engineering Applications of Artificial Intelligence, 148, 110320.

Romeo, L., Devanna, R.P., Matranga, G., Biddoccu, M. & Milella, A. (2025).  Combining deep learning models and depth-based classification for scale-invariant segmentation of RGB-D vineyard images.  Scientific Report, Nature. (submitted)

Brambilla, C., Nicora, M. L., Romeo, L., Storm, F. A., D'Orazio, T., Malosio, M. & Scano, A. (2025). Biomechanical analysis on neurotypical and autism spectrum disorder people during human-cobot interaction. Applied Ergonomics, Elsevier. (under review)

Patruno, C., Romeo, L., Bono, A., Cicirelli, G. & D'Orazio, T. (2025).  Skeleton-based Human Action Recognition for Manufacturing in Assembly Task by Deep Learning.  In Multimodal Sensing and Artificial Intelligence: Technologies and Applications III. SPIE. Munich, Germany. (submitted)

Patruno, C., Cicirelli, G., Romeo, L., & D'Orazio, T. (2025). Analysis of Input Data Configurations in CNN-based Human Action Recognition for Assembly Task. In 2025 11th International Conference on Control, Decision and Information Technologies (CoDiT). Split, Croatia. IEEE. (submitted)

Romeo, L., Patruno, C., Cicirelli, G., & D'Orazio, T. (2025). Deep learning analysis of Single-User Human Action Recognition in Manufacturing Scenarios. In 2025 11th International Conference on Control, Decision and Information Technologies (CoDiT). Split, Croatia. IEEE. (submitted)

2024

Romeo, L., Bono A., Cicirelli G. & D’Orazio, T. (2024). Industrial Datasets for Multi-Modal Monitoring of an Assembly Task for Human Action Recognition and Segmentation. In 2024 4th National Conference on Artificial Intelligence (Ital-IA). Naples, Italy.

Romeo, L., Cicirelli, G., Marani, R. & D’Orazio, T. (2024). Multimodal data extraction and analysis for the implementation of Temporal Action Segmentation models in Manufacturing. In 2024 10th International Conference on Control, Decision and Information Technologies (CoDiT). Valletta, Malta. IEEE.

Romeo, L., Maselli M.V., García Domínguez M., Marani, R., Lavit Nicora M., Malosio M., Cicirelli, G. & D’Orazio, T. (2024). A Dataset on Human-Robot Collaboration for Action Recognition in Manufacturing Assembly. In 2024 10th International Conference on Control, Decision and Information Technologies (CoDiT). Valletta, Malta. IEEE.

2023

Brambilla, C., Marani, R., Romeo, L., Nicora, M. L., Storm, F. A., Reni, G., ... & Scano, A. (2023). Azure Kinect performance evaluation for human motion and upper limb biomechanical analysis. Heliyon, 9(11).

Romeo, L., Devanna, R. P., Marani, R., Matranga, G., Biddoccu, M., & Milella, A. (2023, August). Scale-invariant semantic segmentation of natural RGB-D images combining decision tree and deep learning models. In Multimodal Sensing and Artificial Intelligence: Technologies and Applications III (Vol. 12621, pp. 257-260). SPIE. Munich, Germany.

Romeo, L., Marani, R., D’Orazio, T., & Cicirelli, G. (2023). Video Based Mobility Monitoring of Elderly People Using Deep Learning Models. IEEE Access, 11, 2804-2819.

2022

Cicirelli, G., Marani, R., Romeo, L., Domínguez, M. G., Heras, J., Perri, A. G., & D’Orazio, T. (2022). The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing. Scientific Data, 9(1), 1-12.

Romeo, L., Marani, R., Perri, A. G., & D’Orazio, T. (2022). Microsoft Azure Kinect Calibration for Three-Dimensional Dense Point Clouds and Reliable Skeletons. Sensors, 22(13), 4986.

2021

Romeo, L., Marani, R., Malosio, M., Perri, A. G., & D’Orazio, T. (2021, June). Performance analysis of body tracking with the microsoft azure kinect. In 2021 29th Mediterranean Conference on Control and Automation (MED) (pp. 572-577). Bari, Italy. IEEE.

2020

Romeo, L., Petitti, A., Marani, R., & Milella, A. (2020). Internet of robotic things in smart domains: Applications and challenges. Sensors, 20(12), 3355.

Romeo, L., Marani, R., Petitti, A., Milella, A., D’Orazio, T., & Cicirelli, G. (2020, October). Image-Based Mobility Assessment in Elderly People from Low-Cost Systems of Cameras: A Skeletal Dataset for Experimental Evaluations. In International Conference on Ad-Hoc Networks and Wireless (pp. 125-130). Bari, Italy. Springer, Cham.

Romeo, L., Marani, R., Lorusso, N., Angelillo, M. T., & Cicirelli, G. (2020, June). Vision-based assessment of balance control in elderly people. In IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-6). Bari, Italy.

Romeo, L., Petitti, A., Marani, R., & Milella, A. (2020, June). Internet of robotic things in industry 4.0: Applications, issues and challenges. In IEEE 7th International Conference on Control, Decision and Information Technologies (CoDiT) (Vol. 1, pp. 177-182). Prague, Czech Republic. IEEE.

Romeo, L., Petitti, A., Colella, R., Valecce, G., Boccadoro, P., Milella, A., & Grieco, L. A. (2020, February). Automated deployment of iot networks in outdoor scenarios using an unmanned ground vehicle. In 2020 IEEE International Conference on Industrial Technology (ICIT) (pp. 369-374). Buenos Aires, Argentina. IEEE.

Contact
Information

Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA)

​

National Research Council of Italy (CNR)

via Amendola 122 D/O

70126, Bari, Italy

  • ORCiD
  • GoogleScholar
  • Scopus
  • ResearchGate
  • LinkedIn

©2024 by Laura Romeo. Content on this site is licensed under a Creative Commons Attribution 4.0 International License

bottom of page